
AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 1

Q2a. What are the key challenges being faced by software engineering?

Ans 2a. The key challenges facing software engineering are:

1. Coping with legacy systems, coping with increasing diversity and
coping with demands for reduced delivery times

2. Legacy systems-Old, valuable systems must be maintained and
updated.

3. Heterogeneity-Systems are distributed and include a mix of hardware
and software.

4. Delivery-There is increasing pressure for faster delivery of software.

b. What is meant by risk management? Explain risk management process.

Ans 2b. Risk management is concerned with identifying risks and drawing
up plans to minimise their effect on a project. A risk is a probability that
some adverse circumstance will occur. Risk Management process consists
of:

• Risk identification-Identify project, product and business risks
• Risk analysis-Assess the likelihood and consequences of these risks
• Risk planning-Draw up plans to avoid or minimise the effects of the

risk
• Risk monitoring-Monitor the risks throughout the project

c. What are the attributes of good software?

Ans 2c.The software should deliver the required functionality and
performance to the user and should be maintainable, dependable and usable.

• Maintainability-Software must evolve to meet changing needs
• Dependability-Software must be trustworthy
• Efficiency-Software should not make wasteful use of system

resources
• Usability-Software must be usable by the users for which it was

designed

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 2

Q3a. Explain the following terms giving suitable example:

(i) Functional requirement (ii) Non-functional requirement
 (iii) Domain requirement

Ans 3a. (i) Functional requirements

Statements of services the system should provide how the
system should react to particular inputs and how the system
should behave in particular situations.

(ii) Non-functional requirements

Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development
process, standards, etc.

(iii) Domain requirements

Requirements that come from the application domain of the
system and that reflect characteristics of that domain

 b. What is meant by an object model? Discuss Inheritance model,
Aggregation model and Interaction model in brief.

Ans 3b. Object models describe the system in terms of object classes. An
object class is an abstraction over a set of objects with common attributes
and the services (operations) provided by each object
Various object models may be produced.

Inheritance models:

• Organise the domain object classes into a hierarchy.
• Classes at the top of the hierarchy reflect the common features of all

classes.
• Object classes inherit their attributes and services from one or more

super-classes. These may then be specialised as necessary.
• Class hierarchy design is a difficult process if duplication in

different branches is to be avoided.

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 3

Aggregation models:

• Aggregation model shows how classes which are collections are
composed of other classes.

• Similar to the part-of relationship in semantic data models.

Q 4a. List the benefits of prototyping. Differentiate between the objectives
of evolutionary and throw-away prototyping.

Ans 4a. Benefits of prototyping:

• Misunderstandings between software users and developers are
exposed

• Missing services may be detected and confusing services may be
identified

• A working system is available early in the process
• The prototype may serve as a basis for deriving a system specification
• The system can support user training and system testing

The objective of evolutionary prototyping is to deliver a working system to
end-users. The development starts with those requirements which are best
understood.

The objective of throw-away prototyping is to validate or derive the system
requirements. The prototyping process starts with those requirements which
are poorly understood.

Q 5a. Describe object request brokers and the principles underlying the
CORBA.

Ans 5a. The ORB handles object communications. It knows of all objects in
the system and their interfaces. Using an ORB, the calling object binds an
IDL stub that defines the interface of the called object. Calling this stub
results in calls to the ORB which then calls the required object through a
published IDL skeleton that links the interface to the service implementation
CORBA Services:

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 4

Naming and trading services
• These allow objects to discover and refer to other objects on the

network
Notification services

• These allow objects to notify other objects that an event has
occurred

Transaction services
• These support atomic transactions and rollback on failure
•

c. What do you mean by domain specific architectural model? Differentiate
between two types of domain specific models.

Ans 5c. Architectural models which are specific to some application domain
are called domain specific model.

Two types of domain-specific model are:

• Generic models which are abstractions from a number of real
systems and which encapsulate the principal characteristics of
these systems

• Reference models which are more abstract, idealised model.
Provide a means of information about that class of system and
of comparing different architectures

o1 o2

S (o1) S (o2)

IDL IDL

Object Request Broker

o3 o4

S (o3) S (o4)

IDL IDL

Object Request Broker

Network

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 5

Generic models are usually bottom-up models; Reference models are top-
down models

Q 6a. What are various abstractions possible in Component Based
 Software engineering? List few problems associated with CBSE.

Ans 6a. Component-based software engineering (CBSE) is an approach to
software development that relies on reuseIt emerged from the failure of
object-oriented development to support effective reuse. Single object classes
are too detailed and specificComponents are more abstract than object
classes and can be considered to be stand-alone service providers.

Various abstractions:

Functional abstraction -The component implements a single function such
as a mathematical function.

Casual groupings -The component is a collection of loosely related entities
that might be data declarations, functions, etc.

Data abstractions -The component represents a data abstraction or class in
an object-oriented language.

Cluster abstractions -The component is a group of related classes that work
together.

System abstraction -The component is an entire self-contained system.

b. What is meant by design patterns? What are the advantages of using
design patterns?

Ans 6b. Design patterns are reusable solutions to problems that recur in
many applications. A pattern serves as a guide for creating a “good” design.
Patterns are based on sound common sense and the application of
fundamental design principles. These are created by people who spot
repeating themes across designs. The pattern solutions are typically
described in terms of class and interaction diagrams. Examples of design
patterns are expert pattern, creator pattern, controller pattern etc.

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 6

Design patterns are very useful in creating good software design solutions.
In addition to providing the model of a good solution, design patterns
include a clear specification of the problem, and also explain the
circumstances in which the solution would and would not work. Thus, a
design pattern has four important parts:

 • The problem.
 • The context in which the problem occurs.
 • The solution.
 • The context within which the solution works.

Q7a. Define the following terms with respect to UI design principles:

(i) User Familiarity (ii) Consistency
(ii) Minimal surprise (iv) Recoverability

 (v) User Guidance (vi) User Diversity

Ans 7a.

Principle Description
User
familiarity

The interface should use terms and concepts
which are drawn from the experience of the
people who will make most use of the
system.

Consistency The interface should be consistent in that,
wherever possible, comparable operations
should be activated in the same way.

Minimal
surprise

Users should never be surprised by the
behaviour of a system.

Recoverability The interface should include mechanisms to
allow users to recover from errors.

User guidance The interface should provide meaningful
feedback when errors occur and provide
context-sensitive user help facilities.

User diversity The interface should provide appropriate
interaction facilities for different types of
system user.

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 7

b. What do you mean by fault tolerance? Where is fault tolerance required?

Ans 7b. Fault tolerance means that the system can continue in operation in
spite of software failure. Even if the system seems to be fault-free, it must
also be fault tolerant as there may be specification errors or the validation
may be incorrect.
 In critical situations, software systems must be fault tolerant. Fault tolerance
is required where there are high availability requirements or where system
failure costs are very high.

c. Differentiate between forward and backward fault recovery techniques.

Ans 7c. Forward recovery-Apply repairs to a corrupted system state

Backward recovery-Restore the system state to a known safe state

Forward recovery is usually application specific - domain knowledge

is required to compute possible state corrections

Backward error recovery is simpler. Details of a safe state are
maintained and this replaces the corrupted system state

Q 8a. Write a brief note on the following estimation techniques:

(i) Algorithmic cost modelling
(ii) Expert judgement
(iii) Estimation by analogy
(iv) Parkinson's Law
(v) Pricing to win

Ans 8a. Algorithmic: A formulaic approach based on historical cost
information and which is generally based on the size of the software.

Expert Judgement: One or more experts in both software development and
the application domain use their experience to predict software costs.
Process iterates until some consensus is reached.

Estimation by analogy: The cost of a project is computed by comparing the
project to a similar project in the same application domain.

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 8

Parkinson’s Law: The project costs whatever resources are available.
Advantages are No overspend.

Pricing to win: The project costs whatever the customer has to spend on it
Advantage is that you get the contract.

b. Write some guidelines for interface testing

Ans 8b. Some guidelines for interface testing:

• Design tests so that parameters to a called procedure are at the
extreme ends of their ranges.

• Always test pointer parameters with null pointers.
• Design tests, which cause the component to fail.
• Use stress testing in message passing systems.
• In shared memory systems, vary the order in which components are

activated.

Q9a. What is the main purpose of SEI Capability Maturity Model (SEI
CMM)? Explain five different levels of SEI CMM model.

Ans 9a. SEI CMM can be used two ways: capability evaluation and software
process assessment. Capability evaluation and software process assessment
differ in motivation, objective, and the final use of the result. Capability
evaluation provides a way to assess the software process capability of an
organization. The results of capability evaluation indicates the likely
contractor performance if the contractor is awarded a work. Therefore, the
results of software process capability assessment can be used to select a
contractor. On the other hand, software process assessment is used by an
organization with the objective to improve its process capability.

Five levels of SEI CMM model:

1. Initial-Essentially uncontrolled
2. Repeatable-Product management procedures defined and used
3. Defined-Process management procedures and strategies defined

and used
4. Managed-Quality management strategies defined and used
5. Optimising-Process improvement strategies defined and used

AC63/AT63 SOFTWARE ENGINEERING DECEMBER
2012

© IETE 9

b. What do you understand by software configuration? Differentiate among
release, version and revision of a software product.

Ans 9b. The results (also called as the deliverables) of a large software
development effort typically consist of a large number of objects, e.g. source
code, design document, SRS document, test document, user’s manual, etc.
These objects are usually referred to and modified by a number of software
engineers through out the life cycle of the software. The state of all these
objects at any point of time is called the configuration of the software
product. The states of each deliverable object changes as development
progresses and also as bugs are detected and fixed.
Release vs. Version vs. Revision
A new version of software is created when there is a significant change in
functionality, technology, or the hardware it runs on, etc. On the other hand
a new revision of software refers to minor bug fix in that software. A new
release is created if there is only a bug fix, minor enhancements to the
functionality, usability, etc.

c. Write a brief note on software quality review and review process.
Ans 9c. Software quality review:
A group of people carefully examine part or all of a software system and its
associated documentation.
Code, designs, specifications, test plans, standards, etc. can all be reviewed.
Software or documents may be 'signed off' at a review, which signifies that
progress to the next
development stage has been approved by management.
Review Process:

Select
review team

Arrange place
and time

Distribute
documents

Hold review

Complete
review forms

TEXTBOOK

Software Engineering, Ian Sommerville, 7th edition, Pearson Education, 2004

	Backward recovery-Restore the system state to a known safe state

